13 research outputs found

    Robust Networked Federated Learning for Localization

    Full text link
    This paper addresses the problem of localization, which is inherently non-convex and non-smooth in a federated setting where the data is distributed across a multitude of devices. Due to the decentralized nature of federated environments, distributed learning becomes essential for scalability and adaptability. Moreover, these environments are often plagued by outlier data, which presents substantial challenges to conventional methods, particularly in maintaining estimation accuracy and ensuring algorithm convergence. To mitigate these challenges, we propose a method that adopts an L1L_1-norm robust formulation within a distributed sub-gradient framework, explicitly designed to handle these obstacles. Our approach addresses the problem in its original form, without resorting to iterative simplifications or approximations, resulting in enhanced computational efficiency and improved estimation accuracy. We demonstrate that our method converges to a stationary point, highlighting its effectiveness and reliability. Through numerical simulations, we confirm the superior performance of our approach, notably in outlier-rich environments, which surpasses existing state-of-the-art localization methods

    Moreau Envelope ADMM for Decentralized Weakly Convex Optimization

    Full text link
    This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization. Although the current versions of ADMM algorithm provide promising numerical results in producing solutions that are close to optimal for many convex and non-convex optimization problems, it remains unclear if they can converge to a stationary point for weakly convex and locally non-smooth functions. Through our analysis using the Moreau envelope function, we demonstrate that MADM can indeed converge to a stationary point under mild conditions. Our analysis also includes computing the bounds on the amount of change in the dual variable update step by relating the gradient of the Moreau envelope function to the proximal function. Furthermore, the results of our numerical experiments indicate that our method is faster and more robust than widely-used approaches

    Smoothing ADMM for Sparse-Penalized Quantile Regression with Non-Convex Penalties

    Full text link
    This paper investigates quantile regression in the presence of non-convex and non-smooth sparse penalties, such as the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD). The non-smooth and non-convex nature of these problems often leads to convergence difficulties for many algorithms. While iterative techniques like coordinate descent and local linear approximation can facilitate convergence, the process is often slow. This sluggish pace is primarily due to the need to run these approximation techniques until full convergence at each step, a requirement we term as a \emph{secondary convergence iteration}. To accelerate the convergence speed, we employ the alternating direction method of multipliers (ADMM) and introduce a novel single-loop smoothing ADMM algorithm with an increasing penalty parameter, named SIAD, specifically tailored for sparse-penalized quantile regression. We first delve into the convergence properties of the proposed SIAD algorithm and establish the necessary conditions for convergence. Theoretically, we confirm a convergence rate of o(k14)o\big({k^{-\frac{1}{4}}}\big) for the sub-gradient bound of augmented Lagrangian. Subsequently, we provide numerical results to showcase the effectiveness of the SIAD algorithm. Our findings highlight that the SIAD method outperforms existing approaches, providing a faster and more stable solution for sparse-penalized quantile regression

    Robust Linear Hybrid Beamforming Designs Relying on Imperfect CSI in mmWave MIMO IoT Networks

    Full text link
    Linear hybrid beamformer designs are conceived for the decentralized estimation of a vector parameter in a millimeter wave (mmWave) multiple-input multiple-output (MIMO) Internet of Things network (IoTNe). The proposed designs incorporate both total IoTNe and individual IoTNo power constraints, while also eliminating the need for a baseband receiver combiner at the fusion center (FC). To circumvent the non-convexity of the hybrid beamformer design problem, the proposed approach initially determines the minimum mean square error (MMSE) digital transmit precoder (TPC) weights followed by a simultaneous orthogonal matching pursuit (SOMP)-based framework for obtaining the analog RF and digital baseband TPCs. Robust hybrid beamformers are also derived for the realistic imperfect channel state information (CSI) scenario, utilizing both the stochastic and norm-ball CSI uncertainty frameworks. The centralized MMSE bound derived in this work serves as a lower bound for the estimation performance of the proposed hybrid TPC designs. Finally, our simulation results quantify the benefits of the various designs developed.Comment: 15 pages, 7 figure

    Joint Transceiver Designs for MSE Minimization in MIMO Wireless Powered Sensor Networks

    No full text
    In this paper, we study vector parameter estimation in multiple-input multiple-output wireless-powered sensor networks (WPSNs) where sensor nodes operate by harvesting the radio frequency signals transmitted from energy access points (E-APs). We investigate a joint design of sensor data precoders, a fusion rule, and energy covariance matrices to minimize the mean square error (MSE) of the parameter estimate based on a non-linear energy harvesting model. First, we propose a centralized algorithm to solve the MSE minimization problem. Next, to reduce the computational complexity at the fusion center (FC) and feedback overhead from the sensors to the FC, we present a distributed algorithm to locally compute the precoders and the energy covariance matrices. We employ the alternating direction method of multipliers technique to minimize the MSE in a distributed manner without any coordination from the FC. In the proposed distributed algorithm, each sensor node calculates its own precoders and determines the local information of the fusion rule, and then messages are broadcast to other sensor nodes and E-APs. Simulation results demonstrate that the distributed algorithm performs close to the centralized algorithm with reduced complexity. Moreover, the proposed methods exhibit superior estimation performance over conventional techniques in WPSNs

    Data Precoding and Energy Transmission for Parameter Estimation in MIMO Wireless Powered Sensor Networks

    No full text
    In this paper, we study parameter estimation in multiple-input multiple-output (MIMO) wireless powered sensor networks (WPSN). The sensor nodes are powered exclusively by harvesting the radio frequency signals transmitted from the energy access points. We propose a joint design of the sensor data precoders and energy covariance matrices to minimize the mean square error (MSE) of the parameter estimate. This design also incorporates optimal allocation of the harvested power for data acquisition and data transmission. We employ a zero-forcing precoding based estimation framework and the alternating minimization technique to compute the precoders, power allocation, and energy covariance matrices. Simulation results demonstrate that the proposed method achieves a superior estimation performance in comparison to the conventional energy transfer techniques for estimation in WPSNs

    Hybrid Precoder and Combiner Designs for Decentralized Parameter Estimation in mmWave MIMO Wireless Sensor Networks

    No full text
    peer reviewedHybrid precoder and combiner designs are conceived for decentralized parameter estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) wireless sensor networks (WSNs). More explicitly, efficient pre-and post-processing of the sensor observations and received signal are proposed for the minimum mean square error (MMSE) estimation of a parameter vector. The proposed techniques exploit the limited scattering nature of the mmWave MIMO channel for formulating the hybrid transceiver design framework as a multiple measurement vectors (MMV)-based sparse signal recovery problem. This is then solved using the iterative appealingly low-complexity simultaneous orthogonal matching pursuit (SOMP). Tailor-made designs are presented for WSNs operating under both total and per-sensor power constraints, while considering ideal noiseless as well as realistic noisy sensors. Furthermore, both the Bayesian Cramer-Rao lower bound and the centralized MMSE bound are derived for benchmarking the proposed decentralized estimation schemes. Our simulation results demonstrate the efficiency of the designs advocated and verify the analytical findings.9. Industry, innovation and infrastructur

    Robust Finite-Resolution Transceivers for Decentralized Estimation in Energy Harvesting Aided IoT Networks

    No full text
    peer reviewedThis paper develop novel approaches for designing robust transceivers and energy covariance in an IoT network powered by energy harvesting. Our goal is to minimize the mean square error (MSE) at the fusion center (FC) while considering the uncertainty of channel state information (CSI). The proposed designs incorporate both Gaussian and bounded CSI uncertainty models to model the uncertainty in the CSI. Furthermore, two different optimal bit allocation scheme have been proposed for quantizing the measurements from each sensor node (SeN). However, solving the resulting MSE optimization problems with constraints on individual SeN power and total bit rate proves to be challenging due to their non-convex nature under both CSI uncertainty models. To address this challenge, we develop a block coordinate descent (BCD) based iterative framework. This framework leverages the block-convexity of the optimization objective and provides efficient solutions for both uncertainty paradigms considered. By making use of this analytical tractability, we obtain improved performance compared to the uncertainty-agnostic scheme that disregards CSI uncertainty. We validate our approach through numerical simulations, which not only support our analytical findings but also demonstrate the superior performance achieved with our method that accounts for CSI uncertainty.9. Industry, innovation and infrastructur

    Privacy-Preserving Distributed Beamformer Design Techniques for Correlated Parameter Estimation

    No full text
    peer reviewedPrivacy-preserving distributed beamforming designs are conceived for temporally correlated vector parameter estimation in an orthogonal frequency division multiplexing (OFDM)-based wireless sensor network (WSN). The temporal correlation inherent in the parameter vector is exploited by the rate distortion theory-based bit allocation framework used for the optimal quantization of the sensor measurements. The proposed distributed beamforming designs are derived via fusion of the dual consensus alternating direction method of multiplier (DC-ADMM) technique with a pertinent privacy-preserving framework. This makes it possible for each sensor node (SN) to design its transmit precoders in a distributed fashion, which minimizes the susceptibility of vital information to malicious eavesdropper (Ev) nodes, while simultaneously avoiding the significant communication overhead required by a centralized approach for the transmission of the state information to the fusion center (FC). The Bayesian Cramer-Rao bound (BCRB) is derived for benchmarking the estimation performance of the proposed transmit beamformer and receiver combiner designs, while our simulation results illustrate the performance and explicitly demonstrate the trade-off between the privacy and estimation performance.9. Industry, innovation and infrastructur
    corecore